f-Vectors Implying Vertex Decomposability
نویسنده
چکیده
We prove that if a pure simplicial complex of dimension d with n facets has the least possible number of (d − 1)-dimensional faces among all complexes with n faces of dimension d, then it is vertex decomposable. This answers a question of J. Herzog and T. Hibi. In fact, we prove a generalization of their theorem using combinatorial methods.
منابع مشابه
Complement of Special Chordal Graphs and Vertex Decomposability
In this paper, we introduce a subclass of chordal graphs which contains $d$-trees and show that their complement are vertex decomposable and so is shellable and sequentially Cohen-Macaulay.
متن کاملVertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملVertex Decomposable Graphs and Obstructions to Shellability
Inspired by several recent papers on the edge ideal of a graph G, we study the equivalent notion of the independence complex of G. Using the tool of vertex decomposability from geometric combinatorics, we show that 5-chordal graphs with no chordless 4-cycles are shellable and sequentially Cohen-Macaulay. We use this result to characterize the obstructions to shellability in flag complexes, exte...
متن کاملIncremental construction properties in dimension two-- shellability, extendable shellability and vertex decomposability
We give new examples of shellable but not extendably shellable two dimensional simplicial complexes. They include minimal examples, which are smaller than those previously known. We also give examples of shellable but not vertex decomposable two dimensional simplicial complexes. Among them are extendably shellable ones. This shows that neither extendable shellability nor vertex decomposability ...
متن کاملObstructions to Weak Decomposability for Simplicial Polytopes
Provan and Billera introduced notions of (weak) decomposability of simplicial complexes as a means of attempting to prove polynomial upper bounds on the diameter of the facet-ridge graph of a simplicial polytope. Recently, De Loera and Klee provided the first examples of simplicial polytopes that are not weakly vertex-decomposable. These polytopes are polar to certain simple transportation poly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 49 شماره
صفحات -
تاریخ انتشار 2013